Research Review Swarming Behaviors Using Probabilistic Roadmap Techniques

2

Jyh-Ming Lien

Washington University in St. Louis

Texas A&M University

Under supervision of Nancy Amato at Texas A&M University

Swarming Behaviors Flocking System [PG'02, ALife'02, WAFR'02, ICRA'04]

Media & Machines

• What is a flocking system?

- System simulating behaviors of groups of objects
 (e.g. a school of fish, crowds...)
- flock formation is selfish
- Applications
 - Computer graphics, VR, games
 - Robotics
 - Biological/ecological simulation

(Reynolds'84)

- Boid: Individual Member of the flock
- Local Information
 - No central control system (individual-based model)
- 3 simple Rules

Separation

Alignment

Cohesion

How to go towards the goal?
 Use a potential field method

Goal	

Goal Attraction

Obstacle Avoidance

• Combine all

Flocking Systems: Strengths and Weaknesses

 Flocking systems are good at group simulations in simple environments

Media & Machines

- schools of fish, crowds, etc in simple env
- emergent behavior: flock formation is selfish, decentralized, local, and
- Flocking systems are not good at complex navigation or customizing behavior in different regions
 - hide-and-seek (need memory)
 - Maze traversal (global map is useful)

All rooms are geometrically identical. This alien cannot tell which room has the predator she just encountered.

2

Roadmaps = Global Information

- Roadmaps <u>are</u> Global information
 - encode global information (e.g. topology)
 - data structure for storing and accessing information

Roadmap Generation

For a given environment, many techniques exist for automatically constructing roadmaps

(We use MAPRM and OBPRM)

Overview: Roadmap-based Flocking

- Agents have traditional flocking behavior
- Agents dynamically (locally) select routes in roadmap
 - edges selected based on edge weights
 - Edge weights updated as agents traverse them (ant pheromone)
- Roadmap supports implicit
 communication among group
 - Customize agent behavior in different regions

Local vs. Perfect Knowledge

• Global info is useful, but should use it carefully

- we don't want our creatures to be too smart
- no creature will have complete/perfect knowledge of global state

Roadmap-based Agent

Local information

- Environment locally available
- -Roadmap locally/globally available
- •Update local information (dynamic roadmap)
 - -Update information stored in the roadmap
- Memory
 - Remember the visited places
- Reasoning
 - next step based on current info and memory

Information stored in roadmap is updated during simulation

• update weights on good (or bad) paths found

Huma	n					
2	go this way	📱 dead end	1	messa	ige here	danger
http://content.edu.tw/junior/scouting/tc_jr/108/brief03.htm						

Rule-based Roadmaps Media & Machines

- Storing rules in the roadmap enables tuning the flock's behavior to surrounding environment
 - •Different rules in different regions

Example

Traffic signs are rules of the road

- **Reasoning Rules**
- Exploring
- Shepherding

Roadmap-based Behaviors

We study several behaviors:

- Homing
- Exploring
 - Covering
 - Goal Searching
- Traversing Narrow Passages
- Shepherding

The Homing Problem: Find a path from the current position to known goal

- Homing is a very simple behavior:
 - Study how to integrate and maintain basic flocking with new behaviors
 - Compare with most popular approaches
 - Potential Field method
 - Grid Based Navigation (A* search)

Start

Local

info • Memory

information Update local

Swarming Behaviors: Homing [PG'02, ALife'02, WAFR'02]

Homing using a Grid

- Most commonly used approach
- Use A* search to find a path through free grid cells

Homing using Roadmaps

- Find a path on the map
- Flock is attracted to sub-goals on the path

Homing using Roadmaps

- Find a path on the map
- •Flock is attracted to sub-goals on the path

Homing using Roadmaps

- Find a path on the map
- •Flock is attracted to sub-goals on the path

- 40 flock members

-Environment size: 420 m * 420 m

-301 obstacles (6 types)

-Simulation updated every 100ms

Homing using Roadmaps

Homing Movie. -

• Goal (pole) randomly selected, new goal selected when all agents reach current

 Agents select roadmap path (and subgoals) to goal and are attracted to it

Homing: Experiments

Media & Machines

- •Compare Roadmap Based method to Basic Flocking and Grid-Based A* Search
 - •How many flock members can reach the goal?
 - •How long does it take?

boids reaching

Method	#Reached goa	
Basic	10	
A*	40	
Roadmap	40	

Solution Time A* vs. Roadmap

			Local	Minima
Method	Init Time	Path Time	#	Escape (s)
A*	6.02	5.757	2005	1035.43
Roadmap	0.88	0.652	255	22.99

Roadmap is better

*		

Swarming Behaviors Exploring: Covering[PG'02, ALife'02, WAFR'02]

Reasoning

- Agents move `on' roadmap
- If an agent reaches a node with more than two edges, the next direction is selected probabilistically based on edge weights (favor low weights)
- Initially, all weights the same
- Weights increase as edges traversed (dynamic roadmap)

-50 flock members

-Environment size: 80 m *100 m

-16 obstacles

Covering: Experiments

- •Compare adaptive roadmap method to random walk.
- Hosenaped as in the shere the space within reasonable time

Applications: Exploring -50 flock members Goal Searching

-Environment size: 80 m *100 m

-Sensory range: 5 m

Goal Searching Movie 1.	Goal Searching Movie 2.

Experiments on Exploring Goal Searching

Compare goal searching to known goal location Flock with basic behavior can not find the unknown goal

Swarming Behaviors: Traversing Narrow Passages [PG'02, ALife'02, WAFR'02]

- Tune flocking behavior based on surrounding environment
- The main purpose of the rule is to increase the distance between agents so that they will spread out in narrow passage

Swarming Behaviors: Traversing Narrow Passages

Flock with Roadmap.	Flock with Rule Based Roadmap.

Group Behaviors:

Shepherding [PG'02, ALife'02, WAFR'02, ICRA'04]

Sheep (boids)

- have basic flocking behavior
- avoid dog (repulsive force)
- no global knowledge (no roadmap)
- Dog (external agent)
 - controls flock motion
 - uses roadmap

Local

info Memory Reasoning

information Update local

Group Behaviors: Shepherding

- The dog's tasks include
 - Find path in roadmap taking sheep towards goal
 - Steer (some) sheep in useful direction
 - retrieve and regroup separated sheep

Group Behaviors: Shepherding

Shepherding Movie.			

Shepherding Behaviors Potential Applications

herding

[Vaughan et al '00]

Neuron Migration [Ward et al '03]

- Mine sweeping
- Surveillance
- Tour guide
- Vacuuming
- Mowing

- Bird Strike: Every year, over 1 billion dollars is wasted and lives are endangered worldwide when birds and other wildlife collide with aircraft.

http://www.birdstrike.org/

• Keep swimmers or children away from dangerous areas.

collecting

- Oil spill: Nearly 14,000 spills are reported each year in U.S., accounting for about 100 million gallons of oil. www.cleanupoil.com
- Lions hunt, dogs gather a herd of cattle.

Shepherd's Locomotion

- Shepherd's locomotion: how the shepherd will move in order to control the flock
- Two sub-problems
 - 1. Approaching the flock

2. Steering the flock

Locomotion

Approaching the Flock

Three approaching methods

- 1. Approaching using a straight line [Vaughan et al.'00, Bayazit, Lien, Amato'02]
- 2. Approaching using a safe zone
- 3. Approaching using a local (dynamic) road map

Exact safe zone

Convex hull safe zone

Circular safe zone

Approaching using a Dynamic Roadmap Media & Machine

Constructed during the simulation

- To reflect the dynamic states of the flock
- Nodes are created near the flock when the shepherd is approaching
 - Nodes are distributed as $P = 1 |P_{gauss}|$
- Each node store its visible flock members, N_f
 - A node will be *removed* if $|N_f| = 0$

Locomotion Steering the Flock

Forward steering

- Steering straight behind the flock [Schultz et al.'94, Vaughan et al.'00, Bayazit, Lien, Amato'02]
- Steering side-to-side behind the flock

Turn steering

Stop-turn steering

 Stop the flock and then change the flock's heading dir

• Pre-turn steering

– Turn the flock before the turn takes place

•

Simulating Shepherding Behaviors

These shepherd locomotions are used as a *common* base to simulate following behaviors

Shepherd Herding

The speed of these videos is 10× faster than the speed of

Shepherd Herding

-

		Steering		
	Approaching	Forward Steering	Turn-steering	
LL	Straight-line	Straight-line		
SL	Safe-zone	Straight-line		
SS	Safe-zone	Side-to-side		
SSS	Safe-zone	Side-to-side	Stop-turn	
SSSP	Safe-zone	Side-to-side	Stop-turn & Pre-turn	
DSS	Dynamic-roadmap	Side-to-side	Stop-turn	
DSSP	Dynamic-roadmap	Side-to-side	Stop-turn & Pre-turn	

• Safe-zone and Dynamic-Roadmap approaching is better than Straight-line approaching

-

- Side-to-Side steering with stop-turn and pre-turn steering is the best way to steer
- Shepherd with better locomotion travels less (less time spent on corrections and reuniting)

Shepherd Herding

-

Shepherd Covering

Benefit of using our new locomotion

20 flock members Video is in simulation speed 2

LL: Straight-line locomotion.SL: Safe-zone and "better" steering.DL: Dynamic-roadmap and "better" steering.

LL: Straight-line locomotion. Shepherd Patrolling L: Safe-zone and "better" steering. Media & Machines

- For small flocks, straight-line approaching/steering performs best
- For larger flocks, more intelligent techniques are needed
- The performance degrades as the flock size increases

Shepherd Collecting

• Cows are hardest to steer (they have their own mind!!!)

LL: Straight-line locomotion

SL: Safe-zone and "better" steering

DL: Dynamic-roadmap and "better" steering

Flock Type

Shepherd Covering

-

20 Flock members

Conclusion

- Basic flocking systems are good at simulating simple Swarming Behaviors
- More sophisticated behaviors can be generated using global information provided in a roadmap
- Dynamic roadmaps support implicit communication among agents
- Rule-based roadmaps enable region specific customization

Crowd Animation

Unknown Environments

Multiple Shepherds

More information & Movies at

